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A function is obtained representing the effect of an instantaneous
heat pulse in a fluidized bed in the presence of heat losses By way
of the gas flow and through the external walls of the cylindrical
apparatus.

In a bed of finely dispersed material fluidized by
a gas heat transfer takes place mainly via the solid
particles, the volume heat capacity of which exceeds
that of the gas by several orders. With the heat
loss from the system by way of the gas flow taken
into account, the law of heat transfer can be described
by the following differential equation:

00
dt

= Gy* O -1 OU grad B, 1)

where
b=yvyc 8:"Yp,,¢‘p,(l —g).

Let us consider a cylindrical apparatus containing
a fluidized bed. At the upper boundary of the bed we
produce a heat pulse by rapidly pouring into the bed
a small quantity of hot particles of the same material,
This generates in the system of thermal wave directed
downwards, opposite to the direction of gas flow.
The gas passing through the bed continuously carries
away some of the heat. At the same time, part of
the thermal energy introduced by the hot particles
is removed from the bed through the external cylin-
drical surface. Both phenomena combine to facili-
tate a more rapid damping of the heat pulse in the
system compared with a system in which heat losses
are practically absent. The problem is to find a
function representing the effect of the instantaneous
heat pulse on the system considered; using this
fucntion, it should be possible to obtain experimen-
tally the effective thermal diffusivity of the fluidized
bed from the distance to the heat source and the time
needed to reach the temperature maximum [1].

Let us now set up the boundary and initial con-
ditions.

The initial temperature of the bed is constant
and equal to the temperature of the surrounding air:

t—i,—0=0 at T--0. (2)

The temperature at the lower boundary of the bed
remains constant at its inital value;

t—t,=0=20 at z— oo, (3)

Heat transfer takes place through the external
cylindrical surface to the surrounding air:
e a

w— -0 T at
dr }"cf

r=R. (4)

In the case being considered (1) it is convenient to
use cylindrical coordinates, If the z axis coincides
with the axis of the apparatus and the gas flows only
in the direction of this axis (Upa = 0), we have

[ 0% 6O 1 06 *0 ) . , 00
—_— = — = 4 -+ bl ——-. (5)
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It can be assumed that the solution of this equation
is a product of two functions, the former being de-
pendent on the variables r, 7, z and the latter varying
with the coordinate z only. The latter function chara-
cterizes the rate of damping of the heat pulse due
to the heat carried away by the counterflow of gas.

It sharply decreases with distance from the point of
action of the instantaneous heat source, We seek the
solution of (5) in the following form:

O =Coexp[—-bl(z--2)2adW (=, 1 2). (6)

Substitution of (6) into (5) gives a differential
equation which can be used to find the function W:
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A W
G 0T or? roadr 02 2 ai

W, (7)

We now employ the Fourier method, We represent
the solution of Eq. (7) as a product of two functions:

W= RNV (x, 2). (72)

By solving the Sturm-Liouville problem, we
obtain a system of two equations:

oV RV (U

g — =V = 2V, 0, 8)
ot oz 2 agf f (
PR . LR Ler—o (9)
or® roor

Equation (9) is a form of Bessel's equation. Its
particular solution has the following form [2]:

R(r) = CI, (A r). (10)
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The boundary condition (3) gives a relation which
determines the eigenvalues of the parameter A:

ARBE =1, (A RYI (A, R). (11)

According to the conditions of the problem, at
the instant 7 an instantaneous plane heat pulse
acts at the upper boundary zy of the bed. We now
consider Eq, (8). In this case its solution is given
by the Green's function V = G. Equation (8) can be
symbolically written in the form LV = 0, in which
case the condition for the operation of the instantaneous
heat source with coordinates z;, 7o becomes

LGe=—08(z—2, 71

Using the separability property of the delta
function and also introducing a symbol for the in-
verse operation L™!, we obtain

G= —L=18 (2 —2) 6 (1 — Tp).

Let us now represent the delta function as a
Fourier integral [3]:

3(z—2) B (v — 1) =

o
e >ZJJEXP“’“ (e —2) ik (v — )] dhy b

and using the operator L™}, we obtain

4
8

— 1 o
G= m [y [ ;\';2 aef‘!'aefk% +

—_w

, (U

: +z/ezJ expliky (z— 2,)= ity (v — T)]dby k. (12)
Aot

We now integrate Eq, (12), first with respect
to the variable ky, for which purpose we use the
theory of residues and the fact that the integrand
function has one singular point:

iky = — Qg — (DU /2 Ogp— Af g

The integral of (12) with respect to the variable ky
is equal to the residue at this point.
After some manipulation we obtain

1
=— —;—exp [(T — To) (— A G—

o0
— (bUY/2 aef)z] & cos ky{z —z,) 2xp[— kY @et(t — 1, dky.

Remembering that the integral on the right-hand
side is [4]

1 sttt —7g) expl—~ (z — 2, /4 gt — Ty)],

49
we finally obtain
G = — ———— eX | —T (——Xf -—
Maefﬂ (T — TD) p L(T 0) 4553
2 IPIRY )
| )
2ay 4 Ge(T - To)

We now employ the principle of superposition
of solutions. From (5), (7a), (13) we determine
the variation of the temperature at the point z when
at time 1 an instantaneous heat pulse acts at the
point zg. In order to simplify the calculations, we
set 7q= 0, zy= 0, Then

C—exp (— bUz )vlo(nul‘) v

V auemt

6=

(_bL )

X expiT

( A2 o (14)

4ae

By differentiating the function (14) with respect
to time and equating the derivatives fo zero, we
determine its maximum. After simplification we have

2 10 (2\’5’ {) {exp ("" 2 ?"? Qef":m)] Y

f=1

x [(?naeﬂ- L )ril + m»ﬁ—j —0. (15)

et Qg

The eigenvalues of the parameter A; (the roots of Eq.
(11)) continuously increase with increasing i; this
results in a rapid reduction of the factor Iy(A;, T)
exp(—2Af aef Tm) Which tends to zero as Aj — .

The series (15) converges rapidly; therefore for
finding the time of the temperature maximum it is
quite sufficient to use the first term of the series
only. Substitution of the value of the first root of

Eq. (11) R%? = 2Bi into (5) gives, after manipulation,

T (4 QeBI/R? - (DU Qog)+ T — 2%/4 Qer== 0
Since the negative solution contradicts the physical

meaning of the problem, we write the expression for
the positive root:

SR A

R2 Qef
Bl (BUR T 2
1+ S e e — 1 16
AR

The relation thus obtained makes possible the
determination of the time when the maximum temp-
erature occurs at a given point with coordinate z
after operation of an instantaneous heat pulse at the
origin of the coordinate system, provided that the
heat losses take place via the fluidizing gas and
through the external eylindrical surface. Without
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heat losses from the system (Bi — 0 and U — @),
the removal of the indeterminacy yields the well-
known relation, which is used for the experimental
determination of the thermal conductivity:

Ty == 2%/4 Qef. (17)
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Fig. 1. Dependence of the
time needed to reach the
temperature maximum on
Bi and the height z/R: 1-6)
z/T=0.2;05;1;2;4;10,

Comparing (16) and (17), we calculate the cor-
rection for the temperature maximum due to loss
of heat from the system:

¢ 5 - TlT,, = 2 {[4 G BIYR? - (DU Y/ qel 2%/~ X

m

MV V- [46,Bi/RE - (WU P 2aee-- 1. (18)

Let us consider the special case in which heat trans-
fer from the system by the gas is negligibly small
and heat losses occur only through the external
cylindrical surface. Equation (18) becomes simpler:

i = Tm
Bi '
X T

ST

which shows that the correction ¢ Rj is a function of
the two groups z/r and Bi. With increasing values

of Bi and z/R the magnitude of the correction be-
comes increasingly different from 1 (Fig. 1). It
should be noted that because of the relatively high
thermal diffusivity of the fluidized bed, Bi is usu-
ally small (Bi < 1), even in the case of a large appar-
atus. It is therefore interesting to assess the con-
ditions when the loss of heat from the bed fo the
external cylindrical surface can be neglected. Usu-
ally, the accuracy of the determination of the thermal
diffusivity does not exceed 5%; it is therefore per-
missible to take ¢p; not less than 0.95., With this
condition Eq. (19) gives the inequality

1

(_R_) Bi [0.14. (20)
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In Fig. 1 this condition is represented by the
shaded part of the graph, which shows the permis-
sible range of variation of z/R and Bi when in pro-
cessing the experimental results use is made of
the simpler relation (17).

Let us now turn to the other limiting case: the
column is well insulated and the condition (20) is
satisfied, but heat is carried away by the gas. In
this case

Gy = T/T,, = 2 (@ BUZR VT + (bUzag i — 11 (21)

The magnitude of the correction varies from 1
to 0 decreasing with increasing bUz/dgs, as may be
clearly seen from Fig. 2 where (21) is represented
graphically.

If the correction ey differs little from unity
(1 > ¢y > 0.95) then, obviously, the effect of heat
loss via the fluid flow may be neglected and the
following inequality applies:

DUz e 0.47. (22)

X this condition is satisfied the well-known re-
lation (17) can be used. The error thereby intro-
duced is less than 5% and remains well within the
required range of test accuracy. The region where
the condition (22} is satisfied is indicated in Fig. 2
by shading,

% 9, T

295 rogas

08 0.90?7/7 ﬁ N
aajl /A ! \
o LN

o8 0 02 04 06 buzfay

a4

T~

az

LT

1 z 4 6 8 blz/aes
Fig. 2. Dependence of the
time needed to reach the
temperature maximum ¢y;

on the group bUz/def.

We now illustrate the above considerations by
an example. It is required to measure the effective
thermal diffusivity of a fluidized bed along the verti-
cal in a 1-m diameter cylindrical apparatus in which
the height of the bed is z = 1,5 m, We use the modi-
fied method of instantaneous heat sources [1]. Ac~
cording to the literature data ggp = 20 cm?/sec, U =
=1.5 m/sec, a = 20 W/m?.°C, The volume heat
capacity of the bed and gas are 10f and 500 J/m® - °C,
respectively. It is easy to see that these conditions
fail to satisfy Eq. (22):

DLz Geg== 300-1.5-1.5/10°-20- 10~ > 0.47,
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while condition (20) is satisfied:

Bi (Lf - »2R (L)’ -
R aef"pana“ -~ ) R

. 2
SO\ S, (Li < 014,
2010 10° \0.5

For this reason in measuring ge¢ relation (17) can be
used with a correction which takes into account the
heat carried away from the bed by the fluidizing gas
obtained from Fig. 2 or relation (21).

NOTATION

aef—effective thermal diffusivity of fluidized bed;
b—ratio of volume heat capacities of bed and gas;
R-—radius of apparatus; c, cpa-—specific heats of gas
and particles; U—~gas velocity; z, r—coordinates;
t, @—temperatures; r—time; T,~—time needed to
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reach the temperature maximum; o —coefficient of
heat transfer from cylindrical surface to surround-
ing air; ¢4, @y—corrections to Ty; Y, ypa——den—
sities of gas and material; e~-voidage.
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